Dissecting the large noncovalent protein complex GroEL with surface-induced dissociation and ion mobility-mass spectrometry.
نویسندگان
چکیده
Tandem mass spectrometry is a tool to dissect noncovalent protein complexes into smaller substructures for quaternary structure analysis. The commonly used activation method, collision induced dissociation (CID), often provides limited structural information from the typical dissociation pattern where unfolded monomers are ejected from the protein complex. In contrast, surface-induced dissociation (SID) has been shown to be very effective at dissociating protein complexes with less unfolding than CID. We present here SID of a large noncovalent tetradecamer protein, GroEL (801 kDa). A wide variety of products, including heptamers representative of the native topology, are released from the precursor upon SID, significantly different from the ubiquitous monomer ejection in CID. Enhanced dissociation into heptamers is observed when the charge states of the GroEL precursor are reduced by adding triethylammonium acetate into the spraying buffer. Ion mobility is utilized after SID to separate products overlapping in m/z to simplify the SID spectra. Compact heptamers from the charge-reduced tetradecamer are clearly distinguished from other overlapping species. SID can be very useful for quaternary structure studies of large noncovalent protein complexes, as manifested by the GroEL data where the tetradecamer dissociates into heptamers, reflecting the native topology of the complex.
منابع مشابه
Surface induced dissociation: dissecting noncovalent protein complexes in the gas phase.
The quaternary structures of proteins are both important and of interest to chemists, because many proteins exist as complexes in vivo, and probing these structures allows us to better understand their biological functions. Conventional structural biology methods such as X-ray crystallography and nuclear magnetic resonance provide high-resolution information on the structures of protein complex...
متن کاملSurface induced dissociation yields quaternary substructure of refractory noncovalent phosphorylase B and glutamate dehydrogenase complexes.
Ion mobility (IM) and tandem mass spectrometry (MS/MS) coupled with native MS are useful for studying noncovalent protein complexes. Collision induced dissociation (CID) is the most common MS/MS dissociation method. However, some protein complexes, including glycogen phosphorylase B kinase (PHB) and L-glutamate dehydrogenase (GDH) examined in this study, are resistant to dissociation by CID at ...
متن کاملThe use of shift reagents in ion mobility-mass spectrometry: studies on the complexation of an active pharmaceutical ingredient with polyethylene glycol excipients.
Gas-phase ion mobility studies of mixtures containing polyethylene glycols (PEG) and an active pharmaceutical ingredient (API), lamivudine, have been carried out using electrospray ionization-ion mobility spectrometry-quadrupole-time-of-flight mass spectrometry (ESI-IMS-Q-TOF). In addition to protonated and cationized PEG oligomers, a series of high molecular weight ions were observed and ident...
متن کاملRevealing the quaternary structure of a heterogeneous noncovalent protein complex through surface-induced dissociation.
As scientists begin to appreciate the extent to which quaternary structure facilitates protein function, determination of the subunit arrangement within noncovalent protein complexes is increasingly important. While native mass spectrometry shows promise for the study of noncovalent complexes, few developments have been made toward the determination of subunit architecture, and no mass spectrom...
متن کاملDeterminants of gas-phase disassembly behavior in homodimeric protein complexes with related yet divergent structures.
The overall structure of a protein-protein complex reflects an intricate arrangement of noncovalent interactions. Whereas intramolecular interactions confer secondary and tertiary structure to individual subunits, intermolecular interactions lead to quaternary structure--the ordered aggregation of separate polypeptide chains into multisubunit assemblies. The specific ensemble of noncovalent con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Analytical chemistry
دوره 85 17 شماره
صفحات -
تاریخ انتشار 2013